Isometric Dilations of Non-Commuting Finite Rank n-Tuples
نویسندگان
چکیده
منابع مشابه
Isometric Dilations of Non-commuting Finite Rank N-tuples
A contractive n-tuple A = (A1, . . . , An) has a minimal joint isometric dilation S = (S1, . . . , Sn) where the Si’s are isometries with pairwise orthogonal ranges. This determines a representation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed nonself-adjoint algebra S generated by S is completely described in terms of the properties of A. This provid...
متن کاملPartially Isometric Dilations of Noncommuting N-tuples of Operators
Given a row contraction of operators on Hilbert space and a family of projections on the space which stabilize the operators, we show there is a unique minimal joint dilation to a row contraction of partial isometries which satisfy natural relations. For a fixed row contraction the set of all dilations forms a partially ordered set with a largest and smallest element. A key technical device in ...
متن کاملUnitary N-dilations for Tuples of Commuting Matrices
We show that whenever a contractive k-tuple T on a finite dimensional space H has a unitary dilation, then for any fixed degree N there is a unitary k-tuple U on a finite dimensional space so that q(T ) = PHq(U)|H for all polynomials q of degree at most N .
متن کاملStandard dilations of q-commuting tuples
Here we study dilations of q-commuting tuples. In [BBD] the authors gave the correspondence between the two standard dilations of commuting tuples and here these results have been extended to q-commuting tuples. We are able to do this when q-coefficients ‘qij ’ are of modulus one. We introduce ‘maximal q-commuting subspace ’ of a n-tuple of operators and ‘standard q-commuting dilation’. Our mai...
متن کاملRelative n-th non-commuting graphs of finite groups
Suppose $n$ is a fixed positive integer. We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$, associated to the non-abelian subgroup $H$ of group $G$. The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$. Moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2001
ISSN: 0008-414X,1496-4279
DOI: 10.4153/cjm-2001-022-0